

Numerical study of the trajectory stability of lateral-abnormal projectiles penetrating soil at small angles of attack

-- Modified Integrated Force Law

Reporter: Qiran Sun

Tutor : Yuxin Sun

Nanjing University of Science and Technology

May 2016

- 1 Introduction
 - 2 Geometry of lateral-abnormal projectiles

Index

- Modified Integrated Force Law (MIFL) method
- 4 Numerical analysis and field test
- 5 Conclusion

Introduction

accurate prediction of an earth penetrating projectile's trajectory

1. Introduction

Geometry of lateral-abnormal projectiles

- 2.1 Coordinate systems
- 2.2 Description of Lateral-abnormal projectiles
- 2.3 3D geometry of the later-abnormal projectiles

2. Geometry of lateral-abnormal projectiles

2.1 Coordinate systems

3D problem reduced to 2D problem the plane motion hypothesis 2 coordinate systems inertial coordinate system weapon coordinate system 3 degrees of free translation velocity of CG

rotation velocity of CG

2. Geometry of lateral-abnormal projectiles

2.1 Coordinate systems

Origin: the tip of the projectile impacts the soil

X-axis: soil surface

Y-axis: normal to soil surface

$$T = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix}$$

$$T = \begin{bmatrix} \cos(-\theta) & \sin(-\theta) \\ -\sin(-\theta) & \cos(-\theta) \end{bmatrix}$$

weapon coordinate system

Origin: CG of the projectile

 x_w -axis: centerline of the projectile

 y_w -axis: radius direction of the projectile

2.2 Description of Lateral-abnormal projectiles

different geometrical nose pin on the front of the penetrator

conical nose pin

projectile #5 and #6

blunt nose pin

projectile #3 and #4

ogive nose pin

and others

2.3 3D geometry of the later-abnormal projectile

$$f'(x_w) = \tan(\pi - \eta)$$

$$\int \sin \eta = \frac{-f'(x_w)}{\sqrt{1 + f'(x_w)^2}}$$

$$\cos \eta = \frac{1}{\sqrt{1 + f'(x_w)^2}}$$

$$dS = \sqrt{1 + f'(x_w)^2} dx_w$$

$$dA = rp_w d\psi dS = f(x_w) \sqrt{1 + f'(x_w)^2} dx_w d\psi$$

Modified Integrated Force Law (MIFL) method

- 3.1 the stress of the contact resistance--SCET
- 3.2 the force and moment integral
- 3.3 two-dimensional rigid body dynamics

3.1 the stress of the contact resistance--SCET

3.1 the stress of the contact resistance--SCET

$$\begin{cases} \sigma_{x_w t} = \sigma_n(-sin\eta - \mu cos\eta) \\ \sigma_{y_w t} = \sigma_n(-cos\eta + \mu sin\eta)cos\psi \end{cases}$$

3.2 the force and moment integral

external force vector component

acting on an infinitesimal top half area

$$dM_t = x_w dF_{y_w t} - rp_w \cos \psi dF_{x_w t}$$

$$dM_t = x_w dF_{y_w t} - y_w dF_{x_w t}$$

3.2 the force and moment integral

$$\begin{cases} F_{x_w t} = \int dF_{x_w t} \\ F_{y_w t} = \int dF_{y_w t} \end{cases}$$

external force vector component

acting on total top half area

external moment vector component

$$\mathbf{M}_{y_w t} = \int x_w dF_{y_w t} - \int y_w dF_{x_w t}$$

$$\begin{cases} F_{x_w t} = (\psi_{t2} - \psi_{t1}) \int \sigma_n [f'(x_w) - \mu] f(x_w) dx_w \\ F_{y_w t} = -(\sin \psi_{t2} - \sin \psi_{t1}) \int \sigma_n [1 + \mu f'(x_w)] f(x_w) dx_w \\ M_t = -(\sin \psi_{t2} - \sin \psi_{t1}) \int \sigma_n [1 + \mu f'(x_w)] x_w f(x_w) dx_w \\ -(\sin \psi_{t2} - \sin \psi_{t1}) \int \sigma_n [f'(x_w) - \mu] f^2(x_w) dx_w \end{cases}$$

Ignore the separation and reattachment effect

$$\begin{cases} \psi_{t2} - \psi_{t1} = \psi_{b2} - \psi_{b1} = \pi \\ sin\psi_{t2} - sin\psi_{t1} = sin\psi_{b2} - sin\psi_{b1} = 2 \end{cases}$$

3.3 two-dimensional rigid body dynamics

external force vector

external moment vector

$$\begin{cases}
\mathbf{m}\vec{\mathbf{a}} = \overrightarrow{\mathbf{F}} \\
\mathbf{J}\vec{\boldsymbol{\beta}} = \overline{\mathbf{M}}
\end{cases}$$

$$\begin{cases} dV_x/dt = F_x/m \\ dV_y/dt = F_y/m \\ d\theta/dt = M/I_Z \end{cases}$$

$$T = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix}$$

weapon coordinate system

Numerical analysis and field test

4.1 numerical analysis—trajectory stability

the AOA condition

4.1 numerical analysis—trajectory stability

the velocity condition

4.2 field test

parameters		condition		results		
		Impact velocity	AoA/°	max penetration depth /m	max later displacement /m	total turning angle /°
test results	conical	486	2~3	2.58	-0.44	160
		508	2~3	2.68	-0.48	154
	blunt	495	2~3	2.15	-0.31	118
numerical results	conical	500	2	2.57	-0.53	98.67
			3	2.56	-0.5	99.33
	blunt	500	2	1.88	-0.25	70.46
			3	1.88	-0.22	70.16

Conclusion

Numerical study of the trajectory stability of lateral-abnormal projectiles penetrating soil at small angles of attack

Thank you!

